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Abstract

As the I/O needs of parallel scientific applications increase,

file systems for multiprocessors are being designed to provide

applications with parallel access to multiple disks. Many
parallel file systems present applications with a conventional

Unix-like interface that allows the application to access mul-

tiple disks transparently. This interface conceals the paral-
lelism within the file system, which increases the ease of

programmability, but makes it difficult or impossible for

sophisticated programmers and libraries to use knowledge
about their I/O needs to exploit that parallelism. Further-

more, most current parallel file systems are optimized for

a different workload than they are being asked to support.

We introduce Galley, a new parallel file system that is in-

tended to efficiently support realistic parallel workloads. We

discuss Galley's file structure and application interface, as

well as an application that has been implemented using that
interface.

1 Introduction

While massively parallel computers have been steadily in-

creasing in computational power for years, the power of their

I/O subsystems has not been keeping pace. Hardware limi-

tations are one reason for the difference m the rates of per-

formance increase, but the slow development of new parallel

file systems is also to blame. One of the primary reasons
that parallel file systems have not improved at the same

rate as other aspects of multiprocessors is that, until re-

cently, there has been limited information available about

how applications were using existing parallel file systems

and how programmers would like to use future file systems.

Several recent analyses of production file-system work-

loads on multiprocessors running primarily scientific appli-

cations show that many of the assumptions that guided
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the development of most parallel file systems were incor-
rect [KN94. NK95, PEK+95]. It was commonly believed

that parallel scientific applications would behave like sequen-

tial and vector scientific applications: accessing large fries in

large, consecutive chunks [Pie89, PFDJ89, LIN+93, MKgl].

Studies of two parallel file-system workloads, running a va-

riety of applications in a variety of scientific domains, at

two sites on two architectures, under both data-parallel and
control-parallel programming models, show that many ap-
plications make many small, regular, but non-consecutive

requests to the file system [NKP+95]. These studies sug-
gest that most parallel file systems have been optimized for

a workload that is very different than that which actually
exists.

Using the results from these workload characterizations

and from performance evaluations of existing parallel file
systems, we have developed a new parallel file system that

is intended to deliver high performance to a variety of appli-
cations running under realistic workloads. Rather than at-

tempting to design a f_le system that is intended to directly

meet the specific needs of every user, we have designed a

simpler, more general system that lends itself to supporting

a wide variety of libraries, each of which should be designed

to meet the specific needs of a specific community of users.
In this paper we describe the features and design of the

system. The performance and scalability of the system axe
examined in greater detail in [NK96].

The remainder of this paper is organized as follows. In

Section 2 we describe the specific goals Galley was designed
to satisfy. In Section 3 we discuss a new, three-dimensional

way to structure files in a parallel file system. Section 4

describes the design and current implementation of Galley.

Section 5 discusses the interface available to applications
that intend to use Galley, and Section 6 discusses one such
application in detail. In Section 7 we discuss several other

parallel file systems, and finally in Section 8 we summarize

and describe our future plans.

2 Design Goals

Most current parallel file systems were designed based pri-
marily on hypotheses about how scientific applications would

perform I/O. Galley's design is the result of examining how

parallel scientific applications actually do I/O. Accordingly,

Galley is designed to satisfy several goals:

• Efficiently handle a variety of access sizes and patterns.

• Allow applications to explicitly control parallelism in
file access.
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Figure 1: An example of a 2-dimensional, cyclically-shifted

block layout. In this example there are 6 disks, logically

arranged into a 2-by-3 grid, and a 6-by-12 block matrix.

The number in each square indicates the disk on which that
block is stored.

• Be flexible enough to support a wide variety of inter-

faces and policies, implemented in libraries.

• Allow easy and efficient implementations of libraries.

• Scale to many compute and I/O processors.

• Minimize memory and performance overhead.

3 File Structure

Most existing multiprocessor file systems are based on the

conventional Unix-like file-system interface in which a file is

seen as an addressable, linear sequence of bytes [BGST93,

Pie89, LIN+93]. The file system typically declusters files

(i.e., scatters the blocks of each file across multiple disks), al-

lowing parallel access to the file. This parallel access reduces
the effect of the bottleneck imposed by the relatively slow

disk speed. Although the file is actually scattered across

many disks, the underlying parallel structure of the file is

hidden from the application.

Galley uses a more complex file model that should lead

to greater flexibility and performance.

3.1 Subfiles

The linear model can give good performance when the re-

quest size generated by the application is larger than the

declustering unit size, as multiple disks are being used in

parallel. However, the declustering unit size is frequently

measured in kilobytes (e.g., 4KB in !ntel's CFS [Pie89]),
while our workload characterization studies show that the

typical request size in a parallel application is much smaller:
frequently under 200 bytes [NKP+95]. This disparity means

that most of the individual requests generated by parallel

applications are not being executed in parallel. In the worst

case, the compute processors in a parallel application may

issue their requests in such a way that all of an application's

processes may first attempt to access disk 0 simultaneously,

then all attempt to access disk 1 simultaneously, and so on.

Another problem with the linear file model is that a

dataset may have an efficient, parallel mapping onto multi-

ple disks that is not easily captured by the standard declus-

tering scheme. One such example is the two-dimensional,
cyclically-shifted block layout scheme for matrices, shown

in Figure 1, which was designed for SOLAR, a portable,
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Figure 2: Three dimensional structure of files in the Galley

File System. The portion of the file residing on disk 0 is

shown in greater detail than the portions on the other two
disks.

out-of-core linear-algebra library [TG96]. This data layout

is intended to efficiently support a wide variety of out-of-

core algorithms. In particular, it allows blocks of rows and
columns to be transferred efficiently, as well as square or

nearly-square submatrices.

To address these problems, Galley does not automati-

caUy decluster an application's data. Instead, Galley pro-

vides applications with the ability to fully control this declus-

tering according to their own needs. This control is par-

ticularly important when implementing I/O-optimal algo-

rithms [CK93]. Applications are also able to explicitly in-

dicate which disk they wish to access in each request. To
allow this behavior, files are composed of one or more sub-

files, each of which resides entirely on a single disk, and
which may be directly addressed by the application. This

structure gives applications the ability both to control how

the data is distributed across the disks, and to control the

degree of parallelism exercised on every subsequent access.

3.2 Forks

Each subtile in Galley is structured as a collection of one

or more independent forks. Each fork is a named, linear,

addressable sequence of bytes, similar to a traditional Unix
file. While the number of subfiles in a file is fixed at file-

creation time, the number of forks in a subtile is not fixed;
libraries and applications may add forks to, or remove forks

from, a subtile at any time. The final, three-dimensional file

structure is illustrated in Figure 2. Note that there is no
requirement that all subfiles have the same number of forks,
or that all forks have the same size.

The use of forks allows further application-defined struc-

turing. For example, if an application represents a physical

space with two matrices, one contMning temperatures and
other pressures, the matrices could be stored in the same file

(perhaps declustered across multiple subfiles) but in differ-
ent forks. In this way, related information is stored logically

together but is available independently.

Forks are most likely to be useful when implementing li-

braries. In addition to data in the traditional sense, many

libraries also need to store persistent, library-specific 'meta-

data' independently of the data proper. One example of
such a library would be a compression library similar to

that described in [SW95], which compresses a data file in



multipleindependentchunks.Thelibrarycouldstorethe
compresseddatachunksinoneforkandindexinformation
inanother.

Anotherexampleof the use of this type of file structure

may be found in the problem of genome-sequence compar-

ison, which requires searching a large database to find ap-

proximate matches between strings [Are91]. The raw data-

base used in [Are91] contained thousands of genetic sequences,

each of which was composed of hundreds or thousands of

bases. To reduce the amount of time required to identify
potelitiai matches, the authors constructed an index of the
database that was specific to their needs. Under Galley, this
index c_uld be stored in one fork, while the database itself
could: b_ Stored in a second fork.

A final example of the use of forks is Stream*, a parallel

file abstraction for the data-parallel language, C* [MHQ96].
Briefly, Stream* divides a file into three distinct segments,

each of which corresponds to a particular set of access se-

mantics. Although one could use a different fork for each

segment, Stream* was: actually designed to store: them all
in a single file. In addition to the raw data, Stream* main-

t ains several kinds of metadata, which are currently stored
in three different fileS: .me:ta, .f±rst, .dir. In a Galley-

based :implementation of Stream*, it: would be natural to
store this metadata in separate forks rather than separate
files.

4 System Structure

The Galley parallel file system follows the client-server model,
and is based on a multiprocessor architecture that dedicates

some processors to computation and dedicates the rest to

I/O. In this system, the Compute Processors (CPs) func-

tion as clients and the I/0 Processors (IOPs) act as servers.

4.1 Compute Processors.

A client in Galley is simply a user application that has been

linked with the Galley run-time library, and which runs on a

compute processor. The run-time library receives file-system

requests from the application, translates them into lower-

level requests, and passes them (as messages) directly to

the appropriate serversi running on I/O processors. The
run-time hbrary then handles the transfer of data between

the compute and I/O processors.

As far as Galley is concerned, every compute processor

in an application is completely independent of every other
compute processor. Indeed, Galley does not even assume

that one compute processor is even aware of the existence of

other compute processors. This independence means that

Galley does not impose any communication requirements

on a user's application, which in turn means that applica-

tions may use whichever communication software (e.g., MPI,
PVM, P4) is most suitable to the given problem.

We expect that most applications will use a higher-level
library or language layered above the Galley run-time li-

brary. One such library will be one that supports a linear,

Unix-like file model, which will reduce the effort required to

port applications to Galley. Other libraries currently being

implemented provide Panda [SCJ+95] and Vesta [CFP+95]
interfaces. We also plan to implement ViC*, a variant of

C* designed for out-of-core computations, on top of Gal-

ley [CC94].
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Figure 3: Internal structure of a Galley I/O Processor, show-

ing two active data requests waiting for the CacheManager,
one active metadata request waiting for the NameServer,
and three idle CP threads.

4.2 I/0 Processors

I/O servers in Galley are composed of several independent

units (as shown in Figure 3). Each unit is implemented as
a single thread. Furthermore, each IOP als0 has one thread

designated to handle incoming I/O requests for each Com-

pute processor. When an IOP receives a request from a CP,
the appropriate CP Thread :interprets the requesti: passes it
on to the appropriate worker thread, and then handles the
transfer of data between the IOP and the CP. This multi-

threading makes it easy for an IOP to service requests from

many clients simultaneously.

While one potential concern is that this thread-per-CP

design may limit the scalability of the system, we have not

observed such a limitation in our performance tests [NK96].
One may reasonably assume that a thread that is idle (i.e.,

not actively handling a request) is not likely to noticeably
affect the performance of an IOP. By the time the number

of active threads on a single IOP becomes great enough to
hinder performance, the IOP will most likely be overloaded

at the disk, the network interface, or: the buffer cache, and
the effect of the number of threads will be minor relative to

these other factors. We intend to explore this issue further

as we port Galley to different architectures, which may offer
different levels of thread support.

Galley's metadata (not to be confused with application-

specific cmetadata' discussed above) is distributed across all
IOPs, so there is no single point of contention that could
limit scalability. Thus, each IOP acts both as a data server

and as a metadata server. V_hen a request arrives for a

metadata operation (e.g,, file open, close, delete), the CP's
thread hands the request on to the NameServer, waits for

the NameServer to complete the operation, and then passes

the result back to the requesting CP. For most operations,

the NameServer will need to submit a request to the Cache-
Manager for data stored on disk.



4.2.1 CP Threads

When a request for a data transfer arrives, the CP thread

responsible for handling the request creates a list of all the

disk blocks that will be required to satisfy the request. It

then passes the whole block list on to the CacheManager.

The CP thread then waits on a queue of buffers returned by

the CacheManager. Although this model does not necessar-

ily restrict each CP to a single outstanding request to each

IOP, for performance reasons our current implementation
does impose such a restriction.

As buffers become ready, the CP thread handles the

transfer of data between the requesting CP and that buffer.
When all the requested data has been transferred into or

out of that buffer, the thread decreases that buffer's refer-

ence count, and handles the next buffer in the queue. When

writing, this approach is somewhat unusual in that the IOP

is essentially 'pulling' the data from the CP, rather than

the traditional model, where the CP 'pushes' the data to

the IOP. When the whole request has been satisfied, or if
it fails in the middle, the thread passes a success or fail-

ure message back to its CP, and idles until another request
comes in.

4.2.2 CacheManager

The CacheManager maintains a separate list of requested

disk blocks for each thread. When multiple threads sub-

mit requests to the CacheManager, it services requests from

each list in round-robin order. This round-robin approach

is an attempt to provide fair service to each requesting CP.
Identifying more sophisticated and effective techniques for

providing fair service is a subject of ongoing research.
The CacheManager maintains a global LRU list of all

the blocks resident in the cache. When a new block is to be

brought into the cache, this list is used to determine which

block is to be replaced. Providing applications with more

control over cache policies is another area of ongoing work.

For efficiency, the CacheManager also maintains a hash
table, which contains a list of all the blocks in the cache.

For each disk block requested, the CacheManager searches
its hash table of resident blocks. If the block is found, its

reference count is increased, and a pointer to that buffer is

added to the requesting thread's ready queue. If the block is
not resident in the cache, the first buffer in the LRU list with

a reference count of 0 is scheduled to be replaced with the

new block. The buffer is marked 'not ready', and is added

to the requesting thread's ready queue. Then a request is

issued to the DiskManager to write out the old block (if

necessary), and to read the new block into the buffer.

4.2.3 DiskManager

The DiskManager maintains a list of blocks that are sched-

uled to be read or written. Galley uses 32 KB as its disk

block size. As new requests arrive from the CacheManager,

they are placed into the list according to the disk schedul-

ing algorithm. The DiskManager currently uses a Cycli-

cal Scan algorithm [SCO90]. When a block has been read
from disk. the DiskManager updates the cache status of that

block from "not ready' to 'ready', and notifies any threads

that may have been waiting for that block.

For portability, Galley does not use a low-level driver to

directly access the disk. Instead, Galley relies on the under-

lying system (presumably Unix) to provide such services.

Galley's DiskManager has been implemented to use raw de-
vices, Unix files, or simulated devices as 'disks'. Galley's

disk-handling primitives are sufficiently simple that modify-

ing the DiskManager to access a device directly through a
low-level device driver is likely to be a trivial task.

5 Application Interface

Given the new file model provided by Galley, and the ob-

served frequency of strided access patterns in parallel file

system workloads, it was not sufficient to simply provide
applications with a traditional Unix interface. Galley's in-

terface is primarily intended: to allow the easy implementa-

tion of libraries. These libraries will provide the higher=leVel
functionality needed by most users.

5.1 File Operations

Filesin Galley are created using the g:fs_create_:file()call.

In addition to specifying a file name, the application may

specify on how many IOPs, and even on which ]_OPs, the file

is to be created. File creation is a three-step process. The

first step is to verify that the name chosen is available, and

if so, to reserve it. This is done with a single message to the

IOP that will be responsible for maintaining the metadata
for the new file. The responsible IOP is determined by ap-
plying a simple hash function to the file name. The next step

is to create subfiles on each of the appropriate IOPs. Subtile

creation involves allocating a subtile-header block to the file.

A subtile-header block is analogous to an inode in a Unix

file system, in that it will contain all the metadata informa-

tion for that subtile. Unlike the Unix practice of statically

creating inodes, any block in the file system may become a

subtile-header block. If this step falls (e.g., if one or more

disks have no more room), then the reserved file name is

released, and the appropriate error code is returned to the
application. If the operation succeeds, each IOP will return

the ID of the subtile-header block to the calling CP. The
final step of the file-creation process is to store the file name,

along with all the subtile-header block IDs, on disk at the

responsible IOP and to return a success code to the appli-

cation. After the file is created, the subfiles are empty; that

Is. no forks are created as part of the file-creation process.

When an application opens a file in Galley, using the

gfs_open__file() call, that processor sends a request to the

appropriate metadata server (again, determined by hashing
the file name). If the file exists, the IOP returns a success
code and the list of all the subtile-header block IDs to the

requesting CP. The run-time library assigns the open file a
.tile ID, and caches the list of header block IDs in an open-

.tile table to avoid repeated requests to the metadata server.

Since these IDs do not change during the course of the file's

lifetime, consistency is not an issue.

5.2 Fork Operations

Forks in Galley are created using the gfs_create_fork()

call. Each ca/] takes the ID of an open file, the number of
the subtile in which the fork is to be created, and the name of

the fork. The run-time library looks up the header-block ID
for the appropriate subtile, and sends the header ID and the

fork name to the appropriate IOP, By sending the header
ID to the IOP, there is no need for an extra indexing oper-

ation to take place at the IOP; the IOP is able to retrieve



theappropriatesubtile-headerblockimmediately.TheIOP
insertsthenameoftheforkintothesubtile-headerblock.
andreturnsasuccessorerrorcodetotheCP.Forthecon-
venienceof applicationprogrammers.Galley also provides

a gfs_all_create() call that will create a fork of the given
name in every subtile of a file.

Forks in Galley are opened using the gfs_open__ork()

call, which takes the same parameters as the fork-creation

call. If a fork is successfully opened. Galley returns a fork

ID, which is used in subsequent calls, much like a file descrip-

tor is used in Unix. Forks are closed with gfs_close.=fork(),

and deleted with gfs_deletelork(). If a CP attempts to

delete a fork that has been opened by it. or by any other

CP, that fork is marked for deletion, but is not actually
deleted until it is closed by every CP that has it opened. For

convenience, there are gfs_all_open, gfs_all_close, and
gfs-all_delete callsas well.

5.3 Data Operations

Most parallel tile systems present applications with an ap-

plication interface similar to that of Unix [Pie89. RP95,
BGST93]. While this interface is simple and familiar to

programmers, it was not designed to allow parallel appli-
cations to access parallel disks. In particular, it does not

allow programmers to issue the highly structured requests
that we have observed to be common among parallel, sci-

entific applications [NKP+95]. Indeed, if an interface were

available that allowed an application to issue such highly

regular requests, the number of I/O requests issued m one

production file-system workload could have been reduced by
over 90% INK95]. Such structured operations can also lead

to significant performance improvements [Kot94].

In addition to simple read ( )/_rit e () operations, Galley
supports simple-strided, nested-strided, and nested-batched

operations. Descriptions of these operations and the inter-

faces required to support them may be found in INK95].

The tremendous performance improvements achieved using

these interfaces in Galley are described in INK96].

In addition to these structured operations, Galley pro-
vides a more general file interface, which we call a list inter-

face. This interface accepts an array of (file offset, memory
offset, size) triples from the application. While this interface

essentially functions as a series of simple reads and writes,
it provides the file system with enough information to make

intelligent disk-scheduling decisions, as well as the ability

to coalesce many small pieces of data into larger messages
for transferring between CPs and [OPs. The more struc-

tured interfaces are actually implemented on top of the list
interface.

While all of these interfaces specify the order of data

in the buffer, the order in which the individual pieces are

transferred between the IOP to the CP is not specified. This
freedom allows Galley to transfer the data from the disk to

the lOWs memory and from the IOP to the CP in the most

efficient order rather than strictly sequentially. This ability

to reorder data transfers can lead to remarkable performance

gains [NK96], and is a distinct advantage of these interfaces
over any interface where the user must request one small

piece of data at a time, forcing the file system to service

requests in a particular order.

To avoid complicating these interfaces further. Galley

does not provide an explicit interface to request data from
multiple forks or subfiles. Users may achieve similar results

by submitting multiple requests asynchronously, one to each
desired fork.

6 Example: FITS

We present an example of how the features described above

may be used in practice. The Flexible Image Transport Sys-
tem (FITS) data format is a standard format for astronomi-

cal data [NAS94]. A FITS file begins with an ASCII header
that describes the contents of the file and structure of the

records in the file. The remainder of the file is a series of

records, stored in binary form. Each record is composed of a
key, with one or more fields, and one or more data elements.

Each record within a single FITS file has an identical size

and structure. Records may appear in any order within the
file.

For this paper, we created a system that was able to
handle a specific type of FITS file in use at the National

Radio Astronomy Observatory (NRAO), and generic queries

on those files. A library that was capable of handling many
kinds of queries and FITS files is a perfect example of the

type of domain-specific library we expect to be implemented
on Galley.

6.1 FITS at NRAO

One specific example of how FITS files are used in practice

is described in [KGF93, KFG94]. This type of FITS file con-

tains records with 6 keys, describing the frequency domain
(U, V, W), the baseline, and the time:the data was collected.

The baseline is a single number that:indicates which: antenna
or combination of antennas generated that record. The data

portion of each record contains a pair of data elements, one

for each of two polarizations. Each data element contains

floating-point triples for each of 31 frequencies.: The triples
represent a single complex number and a weighting factor.

Thus, a single data element contains 372 bytes of data and

each record contains 24 bytes of key information and 744
bytes of data.

These tiles are used in many different ways by different

users at NRAO. The most common types of use involve scan-

ning subvolumes of the full, multi-dimensional sparse data

set, where the subvolumes may be defined along one or more
of the axes. For example, a user may want to examine all

the records within a given time range, and sorted along the
U axis.

Previous work on these files has focused on increasing lo-

cality along several dimensions simultaneously. In [KFG94],
the authors examine studied the effectiveness of Piecewise

Linear Order-Preserving Hashing (PLOP:) tiles at reducing

the amount of time required to perform common queries, by
increasing certain kinds of locality within the files. While lo-

cality can also improve performance in parallel file systems,

too much locality can reduce the number of disks being ac-

cessed at any time, actually leading to lower performance.

6.2 FITS on Galley

Since most of the queries common at NRAO include sub-

ranges of time as at least one of the constraints, we sorted

the records by time before distributing them across the IOPs.

The data was distributed in CYCLIC fashion, in blocks of

1024 records. That is, in a system with 4 IOPs, IOP 0 would



holdrecords0to1023.4096to5119,andsoon.whileIOP1
wouldholdrecords1024to2047.5120to6143.andsoon.

Formanyqueries,wewereunabletodeterminea priori

which data records would satisfy the query. As a result, we

frequently examined many keys to identify the small num-

ber of data records that were relevant to the query. To

improve performance, we chose to store the keys in one fork

and the data in another. This setup allowed us to achieve

higher performance when reading the keys, since we were

not paying for the cost of retrieving uninteresting data from

disk. Although we stored all the data in a single fork on
each subtile, another reasonable choice would have been to

store the data for each polarization in its own fork. Since

many of the queries involved data from only a single polar-

ization, this setup would also have reduced the amount of

uninteresting data that was read from disk.

To evaluate the efficacy of their PLOP-file implemen-

tation, the authors performed several queries, which were

intended to be representative of those that were most com-

monly used in practice at NRAO [KGF93]. Their tests were

performed on a single-processor, single-disk system. We per-

formed the same set of queries, using the same data set. on

our implementation. Our tests were performed on a cluster
of IBM RS/6000s connected by an FDDI network. Since the

original queries were performed on a single-node processor,

we used a single CP. We used four lOPs. each with a single

disk. Each IOP used a raw disk partition to store its data,

thus avoiding skewing the results by retrieving data stored
m AIX's buffer cache.

The specific queries performed in both cases are briefly

described below. More detail about each query, and why it

is commonly used at NRAO, may be found in [KGF93].

1. Read the full data set.

2. Read the full data set, sorting records by time.

3. Read the full data set, sorting records by basehne.

4. Read a subvolume of the data including 10% of the

time range.

5. Read a subvolume of the data including 10% of the

time range, sorting the records by U.

6. Read the subvolume for a single time and polarization.

7. Read a subvolume including 10% of the time range and
one polarization.

8. Read a subvolume including 50% of the time range, a

single baseline, and one polarization.

9. Read a subvolume including 50% of the time range,

antenna _1, and one polarization.

10. Read a subvolume including 50% of the time range,

antenna #14, and one polarization.

11. Read a subvolume including 50% of the time range,
antenna _27, and one polarization.

12. Read a subvolume containing a single baseline and a
single polarization, sorting records by time.

Although many of these queries could have been most

efficiently expressed using some form of strided request, our
system was designed to handle generic queries. As a result

these queries were all performed using Galley's fist interface.

The buffer cache on each IOP was flushed prior to each
query.

Table 1 shows the length of time required to complete

each query for both the PLOP-file and Galley implementa-
tions. Since the PLOP-file results were obtained on a dif-

ferent system with only a single disk, we cannot directly

compare the time required to complete the queries. Instead,

we compare the amount of time required to complete a query
relative to the time required to read all the data. This crude

normalization allows us to make some effort at comparison.

Data

Query Elements
1 126092

2 126092

3 126092

4 12636

5 12636

6 351

7 6318

8 186
9 4836

10 4836

11 4836

12 180

PLOP-file

Secs. Normal.

55.49 1.00

70.50 1.27

181.80 3.28

4.10 0.07

6.85 0.12

0.27 0.00

2.33 0.04

1.45 0.03

4.03 0.07

14.50 0.26

20.30 0.37
1.49 O.O3

Galley
Secs. Normal.

11.20 1.00

11.72 1.05

13.96 1.25
1.00 0.09

1.53 0.14
0.17 0.01

0.62 0.05
0.55 0.05
1.45 0.13
2.10 0.19
2.27 0.20
1.57 0.14

Table 1: Timing results for PLOP files on a uniprocessor

system, and for GMley files on a 4-IOP, 1-CP system. Re-
sults are shown in 'raw' form, as well as normalized to the

time required to read the full data set with no filtering or

sorting. The full data set contained 63,046 records, with
126,D92 data elements.

While our implementation on top of Galley was far sim-

pler than the PLOP-file implementation (about 1/I0 the

number of lines of code), it performed significantly better
in 4 out of 11 cases (disregarding the first case. which is

used as a baseline), and had competitive performance in 5

of the remaining cases. Galley performed particularly well

on queries 2 and 3. While the PLOP-file implementation

had to sort the whole dataset in memory, Galley's interface
allowed us to read just the keys from their fork, sort them,

and then read the actual data into memory in sorted order.

Galley also performed relatively well on queries 10 and 11.

While the PLOP-file implementation had to read in 3 to 5

times as many records as they were interested in, we were

able to filter out the interesting records by looking only at

the data in the key-fork. Galley's relative performance was

worst on queries 9 and 12. In these two cases, Galley had to

examine a large number of keys to identify a small number
of interesting records, while the PLOP files were carefully

structured to reduce the number of records they had to ex-

amine for these queries. This same structure also caused
the PLOP-file implementation to be noticeably worse than

Galley's on queries 10 and 11.



7 Related Work

Many different parallel file systems have been developed over
the past decade. While many of these were similar to the

traditional Unix-style file system, there have been also sev-

eral more ambitious attempts.

Intel's Concurrent File System (CFS) [Pie89. Nit92], and
its successor, PFS, are examples of parallel file systems that

provide a finear file model with a Unix-like interface. Sup-
port for parallel applications is limited to file pointers that

may be shared by all the processes in the application. CFS

and PFS provide several modes, each of which provides the

applications with a different set of semantics governing how
the file pointers are shared. Other parallel file systems
with this style of interface are SUNMOS and its successor.

PUMA [WMR+94], sis [LIN+93], and CMMD [BGST93].
PPFS provides the end user with a linear file that is

accessed with primitives that are similar to the traditional

readO/_riteO interface [HER +95]. In PPFS, however.
the basic transfer unit is an application-defined record rather

than a byte. PPFS maps the logical, linear Stream of records
onto an underlying two-dimensional model, indexed with a

(disk, record) p_ir. PPFS provides several mapping func-
tions, which correspond to common data distributions, and

allows an application to provide its own mapping function
as well.

One of the most interesting parallel file systems is the

Vesta file system (and its commercial version, PIOFS) [CF94.
CFP+95]. Files in Vesta are two-dimensional, and are com-

posed of multiple cells, each of which is a sequence of basic
striping units. BSUs are essentiMly records, or fixed-sized

sequences of bytes. Like Galley's subfiles, each cell resides on

a single disk. Unlike Galley, a single disk may contain many
cells. Equivalent functionality could be achieved on GaLley
by mapping cells to forks rather than subfiles. Vesta's inter-

face includes logical views of the data. These views are essen-

tially rectangular partitionings of the two-dimensional fiIe.

and can provide the application with much of the function-

Mity of Galley's strided interfaces. Vesta provides users with

a different and powerful way of thinking about data storage.
[ts largest drawback is that it is ill-suited to datasets that

cannot be partitioned into rectangular sub-blocks of a single
size. Like GaLley, Vesta uses a hashing scheme to distribute

metadata, in addition to the functionality of Vesta. PIOFS
provides applications with a Unix-like interface. Work is un-

derway on a library that will provide a Vesta interface for
Galley.

8 Summary and Future Work

Based on several studies of parallel file systems being used in

production environments, we have designed a new parallel
file system that is intended to provide high performance to

a variety of libraries and applications. Galley is based on a

new three-dimensional structuring of files. This structuring
provides tremendous flexibility to applications and libraries.

as well as opportunities to explicitly control the degree of

parallelism in an application's file accesses. GaLley provides

several new forms of I/O request that reduce the aggregate
latency of multiple small requests and allows the file system

to optimize the disk accesses required to satisfy the request.
The case studies contained in this paper, as well as per-

formance evaluations described elsewhere INK96], suggest

that Galley rectifies many of the shortcomings of existing

parallel file systems. In particular, we demonstrated the

usefulness of Galley's "fork" structure and higher-level in-
terfaces.

Galley has been completely implemented. While Galley
currently runs only on a cluster of IBM RS/6000s and IBM's
SP2 multiprocessor, porting to other architectures should be

fairly straightforward and will be explored in the near future.

Work continues on improving the stability of the system in

general. Future work will focus on efficiently supporting
multiple applications, which may place conflicting demands
on the system.
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